
atos 🛆

Servoproportional 3-way cartridges

piloted, with two LVDT transducers, sizes from 25 to 80

2 OFF-BOARD ELECTRONIC DRIVERS

Please include in the driver order also the complete code of the connected proportional valve.

Drivers model	E-BM-LEB	E-BM-LES
Туре	digital	digital
Format	DIN-rail panel	DIN-rail panel
Tech table	GS230	GS240

To avoid overheating and possible damage of the electronic driver, the valves must be never energized without hydraulic supply to the pilot stage. In case of prolonged pauses of the valve operation during the machine cycle, it is always advisable to disable the driver.

3 GENERAL CHARACTERISTICS

Assembly position	Any position			
Subplate surface finishing to ISO 4401	Acceptable roughness index: Ra ≤0,8, recommended Ra 0,4 – Flatness ratio 0,01/100			
MTTFd valves according to EN ISO 13849	75 years, for futher details see technical table P007			
Ambient temperature range	Standard = $-20^{\circ}C \div +60^{\circ}C$ / PE option = $-20^{\circ}C \div +60^{\circ}C$ / BT option = $-40^{\circ}C \div +60^{\circ}C$			
Storage temperature range	Standard = $-20^{\circ}C \div +70^{\circ}C$ / PE option = $-20^{\circ}C \div +70^{\circ}C$ / BT option = $-40^{\circ}C \div +70^{\circ}C$			
Surface protection	Zinc coating with black passivation, galvanic treatment (driver housing)			
Corrosion resistance	Salt spray test (EN ISO 9227) > 200 h			
Vibration resistance	See technical table G004			
Compliance	CE according to EMC directive 2014/30/EU (Immunity: EN 61000-6-2; Emission: EN 61000-6-3) RoHS Directive 2011/65/EU as last update by 2015/863/EU REACH Regulation (EC) n°1907/2006			

4 HYDRAULIC CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

Size	25	32	40	50	63	80
Nominal flow $\Delta p P-A \text{ or } A-T$ [I/min]						
$\Delta p = 5 bar$	185	330	420	780	1250	2100
$\Delta p = 10 \text{ bar}$	260	470	590	1100	1750	3000
Max permissible flow	500	850	1050	2000	3100	5000
Max pressure [bar]		Ports	P, A, T = 420	X = 350	$Y \le 10$	
Nominal flow of pilot valve at $\Delta p = 70$ bar [I/min]	4	8	28	40	100	100
Leakage of pilot valve at P = 100 bar [l/min]	0,2	0,2	0,5	0,7	0,7	0,7
Piloting pressure [bar]	min: 40% of system pressure max 350 recommended 140 ÷ 160					
Piloting volume [cm ³]	2,16	7,2	8,9	17,7	33,8	42,7
Piloting flow (1) [l/min]	6,5	20	25	43	68	76
Response time 0 ÷ 100% step signal (2) [ms]	21	22	22	25	30	34
Hysteresis [% of the max regulation]	≤ 0,1					
Repeatability [% of the max regulation]	± 0,1					
Thermal drift	zero point displacement < 1% at $\Delta T = 40^{\circ}C$					

(1) With step reference input $0 \div 100\%$

(2) With pilot pressure = 140 bar, see datailed diagrams in section 7.2

The loss of the pilot pressure causes the undefined position of the main spool.

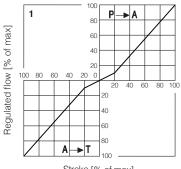
The sudden interruption of the power supply during the valve operation causes the immediate main spool opening $A \rightarrow T$ or $P \rightarrow A$ (for option /A). This could cause pressure surges in the hydraulic system or high decelerations which may lead to machine damages.

5 ELECTRICAL CHARACTERISTICS

Max power consumption	30 W
Max. solenoid current	2,6 A
Coil resistance R at 20°C $3 \div 3,3 \Omega$	
Insulation class	H (180°) Due to the occuring surface temperatures of the solenoid coils, the European standards ISO 13732-1 and EN982 must be taken into account
Protection degree to DIN EN60529	IP65 with mating connectors
Duty factor	Continuous rating (ED=100%)

SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

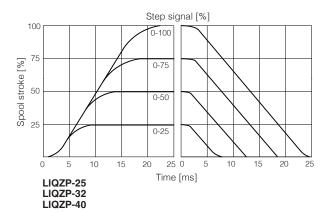
Seals, recommended fluid	temperature	NBR seals (standard) = -20° C ÷ $+60^{\circ}$ C, with HFC hydraulic fluids = -20° C ÷ $+50^{\circ}$ C FKM seals (/PE option) = -20° C ÷ $+80^{\circ}$ C NBR low temp. seals (/BT option) = -40° C ÷ $+60^{\circ}$ C, with HFC hydraulic fluids = -20° C ÷ $+50^{\circ}$ C			
Recommended viscosity		20÷100 mm²/s - max allowed range 15 ÷ 380 mm²/s			
Max fluid	normal operation	ISO4406 class 18/16/13 NAS1638 class 7 s		see also filter section at	
contamination level	longer life	ISO4406 class 16/14/11 NAS1638 class 5		www.atos.com or KTF catalog	
Hydraulic fluid		Suitable seals type	Classification	Ref. Standard	
Mineral oils		NBR, FKM, NBR low temp.	HL, HLP, HLPD, HVLP, HVLPD	DIN 51524	
Flame resistant without water		FKM HFDU, HFDR		ISO 12922	
Flame resistant with water		NBR, NBR low temp.	HFC	- 130 12922	

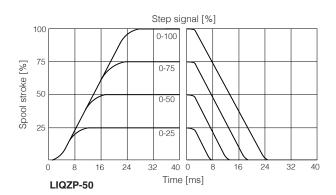

7 DIAGRAMS (based on mineral oil ISO VG 46 at 50 °C)

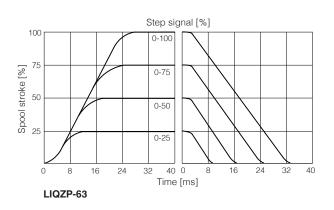
10.1 Regulation diagrams, see note

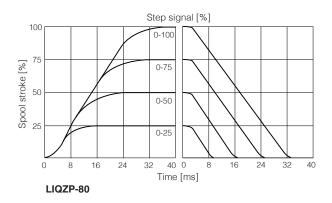
1 = LIQZP (all sizes)

Hydraulic configuration vs. reference signal:

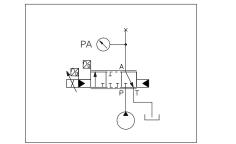

standard option /A Reference signal $0 \div + 10 \text{ V}$ $12 \div 20 \text{ mA} \} P \rightarrow A$ $A \rightarrow T$ $\begin{array}{c} \text{Reference signal } 0 \div 10 \text{ V} \\ 4 \div 12 \text{ mA} \end{array} \right\} \text{ A} \rightarrow \text{T}$ $P \rightarrow A$

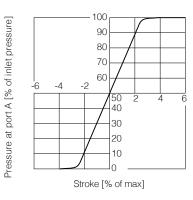


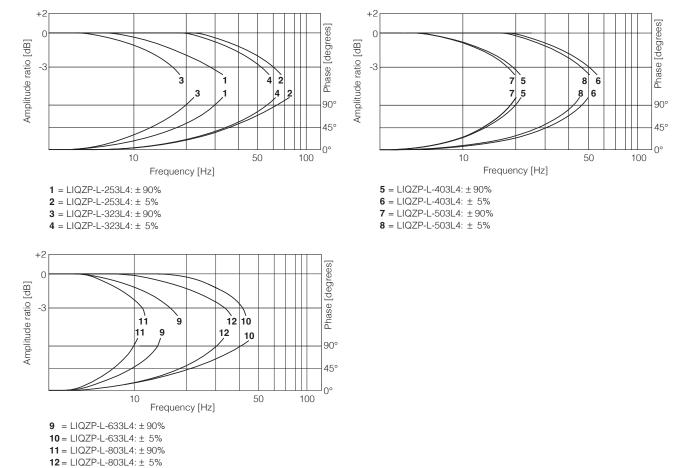



7.2 Response time

The response times in below diagrams are measured at different steps of the reference input signal. They have to be considered as average values. For the valves with digital electronics the dynamics performances can be optimized by setting the internal software parameters.

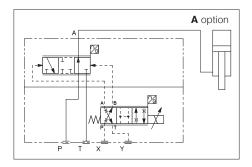






7.3 Pressure gain diagram

7.4 Bode diagrams



8 HYDRAULIC OPTIONS

 A = The standard valve version provides the hydraulic configuration A-T of main spool in absence of electric power supply to the valve.

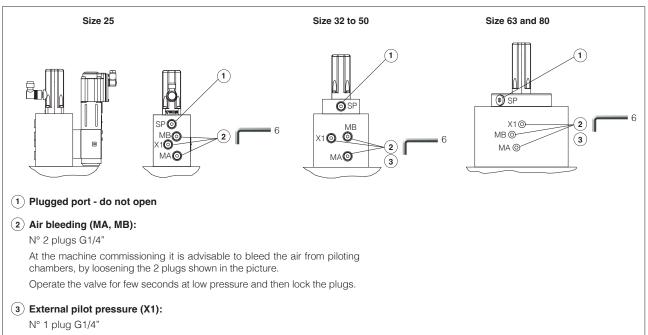
The option /A provides the reverse configuration P-A of main spool in absence of electric power supply to the valve.

This execution is particularly requested in vertical presses for safety reasons, because in case of electric power breakdown the P-A configuration of the main spool prevents the uncontrolled and dangerous downstroke of the press ram.

9 ELECTRICAL CONNECTION - connectors supplied with the valve

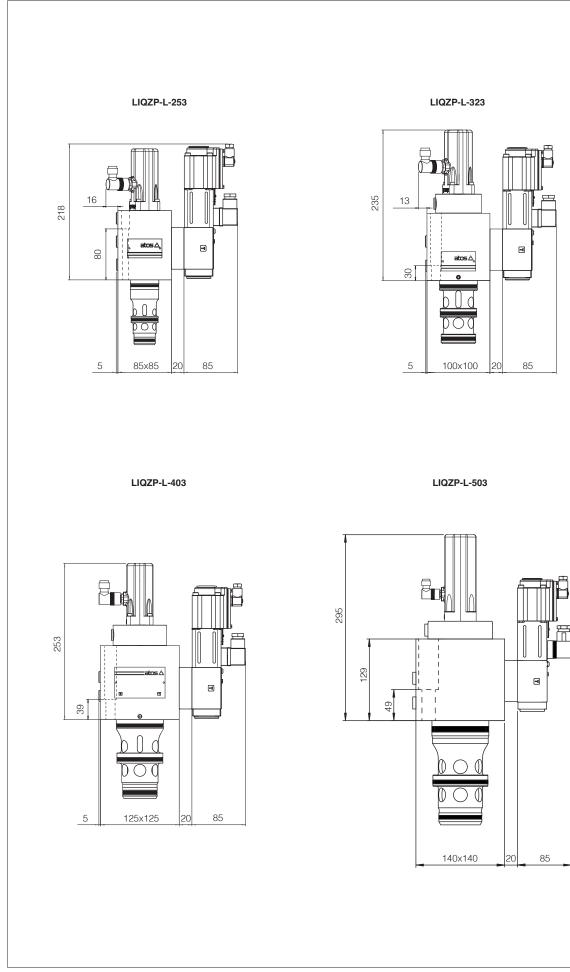
9.1 Solenoid connector

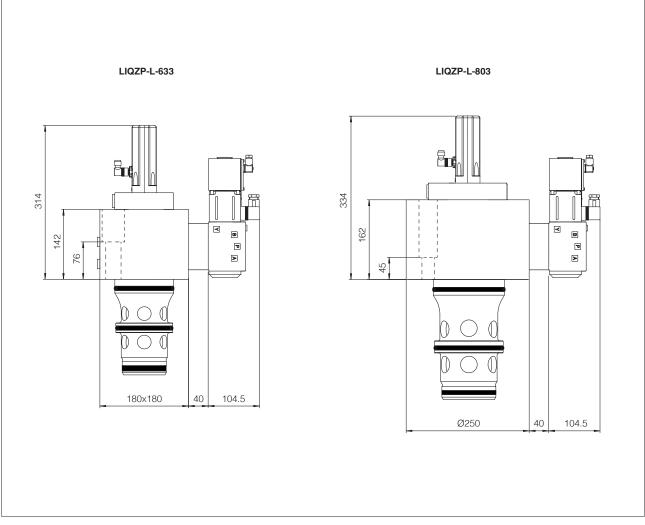
PIN	SIGNAL	TECHNICAL SPECIFICATION	Connector code 666
1	COIL	Power supply	
2	COIL	Power supply	
3	GND	Ground	


9.3 LVDT main stage transducer connector

PIN	SIGNAL	TECHNICAL SPECIFICATION	Connector code
1	PROG	Do not connect	ZBE-08
2	VT+	Power supply +15VDC	
3	AGND	Ground	
4	TR	Output signal	
5	VT-	Power supply -15VDC	

9.2 LVDT pilot transducer connector


PIN	SIGNAL	TECHNICAL SPECIFICATION	Connector code 345
1	TR	Output signal	1 3
2	VT-	Power supply -15VDC	
3	VT+	Power supply +15VDC	
4	GND	Ground	4 2


10 AIR BLEEDING

Туре	Size	Fastening bolts (1)	Mass [kg]
	25	4 socket head screws M12x100 class 12.9 Tightening torque = 125 Nm	8,8
	32	4 socket head screws M16x60 class 12.9 Tightening torque = 300 Nm	11,2
LIQZP	40	4 socket head screws M20x70 class 12.9 Tightening torque = 600 Nm	17,3
LIQZF	50	4 socket head screws M20x80 class 12.9 Tightening torque = 600 Nm	24,6
	63	4 socket head screws M30x120 class 12.9 Tightening torque = 2100 Nm	44,6
	80	8 socket head screws M24x80 class 12.9 Tightening torque = 1000 Nm	72,2

(1) Fastening bolts supplied with the valve

 $\ensuremath{\textbf{Note:}}$ for mounting surface and cavity dimensions, see table P006

13 RELATED DOCUMENTATION

FS001	Basics for digital electrohydraulics	GS500	Programming tools
FS900	Operating and maintenance information for proportional valves	GS510	Fieldbus
GS230	E-BM-LEB digital driver	K800	Electric and electronic connectors
GS240	E-BM-LES digital driver	P006	Mounting surfaces and cavities for cartridge valves